136 research outputs found

    Assessment of Rework Probabilities for Simulating Product Development Processes Using the Design Structure Matrix (DSM)

    Get PDF
    This paper uses the Design Structure Matrix (DSM) to model and simulate the performance of development processes. Though the simulation is a powerful tool for analyzing process performance, its ability is limited by the quality of input information used in the analysis. DSM simulation requires process data that is hard to assess or estimate directly from development participants. In this paper, we propose a methodology that allows a more practical estimation of an important simulation parameter: rework probabilities. Furthermore, we show how does this assessment method (combined with simulation) allow managers to evaluate process improvement plans based on two resulting process measures: reliability and robustness. The method is illustrated with a real application from the automotive industry

    Do-It-Right-Fisrt-Time (DRFT) Approach to DSF Restructuring

    Get PDF
    In this paper, we argue, using two real-world applications from the automotive industry, that the biggest benefit of a Design Structure Matrix (DSM) model may come not from resequencing and partitioning, but rather from “rewiring” the process/blocks. By “rewiring” we mean redefining relationships among elements and/or inserting new elements into the matrix. This requires intimate understanding of the process and cannot be done with application of context-free partitioning algorithms. The Do-it-Right-First-Time (DRFT) approach to DSM restructuring is another way to look at a DSM by inspecting the sources of iteration within a block and reversing it through inserting a DRFT activity at the beginning of the block. In other words, we reverse the traditional Design-Build-Test “Cycle” into a DRFT-Design-Build “Sequence”. That is, the "wiring diagram" of a process or system overpowers the behavior of the individual nodes, so changing the system requires changing the wiring

    Do-It-Right-First-Time (Draft) Approach To Design Structure Matrix (DSM) Restructuring

    Get PDF
    This paper argues, using two real-world applications from the automotive industry, that the biggest benefit of a Design Structure Matrix (DSM) model may come not from resequencing and partitioning, but rather from rewiring the process/blocks. Rewiring means redefining relationships among elements and/or inserting new elements into the matrix. This requires intimate understanding of the process and cannot be done with application of context-free partitioning algorithms. The Do-it-Right-First-Time (DRFT) approach to DSM restructuring is another way to look at a DSM by inspecting the sources of iteration within a block and reversing it through inserting a DRFT activity at the beginning of the block. In this way, the traditional Design-Build-Test Cycle is reversed into a DRFT-Design-Build Sequence." That is, the "wiring diagram" of a process or system overpowers the behavior of the individual nodes, so changing the system requires changing the wiring

    Performance of Coupled Product Development Activities with a Deadline

    Get PDF
    This paper explores the performance of coupled development tasks subject to a deadline constraint by proposing a performance generation model (PGM). The goal of the PGM is to develop insights about optimal strategies (i.e. sequential, concurrent, or overlapped) to manage coupled design tasks that share fixed amount of engineering resources subject to performance and deadline constraints. Model analysis characterizes the solution space for the coupled development problem. The solution space is used to explore the generation of product performance and the associated dynamic forces affecting concurrent development practices. We use these forces to explain conditions under which concurrency is a desirable strategy

    Enhancing the sensitivity of rapid antigen detection test (RADT) of different SARS-CoV-2 variants and lineages using fluorescence-labeled antibodies and a fluorescent meter

    Get PDF
    RT-qPCR is considered the gold standard for diagnosis of COVID-19; however, it is laborious, time-consuming, and expensive. RADTs have evolved recently as relatively inexpensive methods to address these shortcomings, but their performance for detecting different SARS-COV-2 variants remains limited. RADT test performance could be enhanced using different antibody labeling and signal detection techniques. Here, we aimed to evaluate the performance of two antigen RADTs for detecting different SARS-CoV-2 variants: (i) the conventional colorimetric RADT (Ab-conjugated with gold beads); and (ii) the new Finecare™ RADT (Ab-coated fluorescent beads). Finecare™ is a meter used for the detection of a fluorescent signal. 187 frozen nasopharyngeal swabs collected in Universal transport (UTM) that are RT-qPCR positive for different SARS-CoV-2 variants were selected, including Alpha (n = 60), Delta (n = 59), and Omicron variants (n = 108). Sixty flu and 60 RSV-positive samples were included as negative controls (total sample number = 347). The conventional RADT showed sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 62.4% (95%CI: 54–70), 100% (95%CI: 97–100), 100% (95%CI: 100-100), and 58% (95%CI: 49–67), respectively. These measurements were enhanced using the Finecare™ RADT: sensitivity, specificity, PPV, and NPV were 92.6% (95%CI: 89.08–92.3), 96% (95%CI: 96–99.61), 98% (95%CI: 89–92.3), and 85% (95%CI: 96–99.6) respectively. The sensitivity of both RADTs could be greatly underestimated because nasopharyngeal swab samples collected UTM and stored at −80 °C were used. Despite that, our results indicate that the Finecare™ RADT is appropriate for clinical laboratory and community-based surveillance due to its high sensitivity and specificity.This work was made possible by partial funds from REP29-026-3-004 grant from the Qatar National Research Fund (a member of Qatar Foundation) AND QUCG-BRC-2022/23-578 . The statements made herein are solely the responsibility of the authors. We thank the many dedicated persons at Hamad Medical Corporation, Sidra Medicine, and the National Reference lab for their diligent efforts and contributions to making this study possible. Open Access funding provided by the Qatar National Library

    Burden and disease pathogenesis of influenza and other respiratory viruses in diabetic patients

    Get PDF
    Over the past two decades, diabetes mellitus (DM) has been receiving increasing attention among autoimmune diseases. The prevalence of type 1 and type 2 diabetes has increased rapidly and has become one of the leading causes of death worldwide. Therefore, a better understanding of the genetic and environmental risk factors that trigger the onset of DM would help develop more efficient therapeutics and preventive measures. The role and mechanism of respiratory viruses in inducing autoimmunity have been frequently reported. On the other hand, the association of DM with respiratory infections might result in severe complications or even death. Since influenza is the most common respiratory infection, DM patients experience disease severity and increased hospitalization during influenza season. Vaccinating diabetic patients against influenza would significantly reduce hospitalization due to disease severity. However, recent studies also report the role of viral vaccines in inducing autoimmunity, specifically diabetes. This review reports causes of diabetes, including genetic and viral factors, with a special focus on respiratory viruses. We further brief the burden of influenza-associated complications and the effectiveness of the influenza vaccine in DM patients

    Assessment of Broadly Reactive Responses in Patients With MERS-CoV Infection and SARS-CoV-2 Vaccination

    Get PDF
    Importance: In the ongoing COVID-19 pandemic, there remain unanswered questions regarding the nature and importance of the humoral immune response against other coronaviruses. Although coinfection of the Middle East respiratory syndrome coronavirus (MERS-CoV) with the SARS-CoV-2 has not been documented yet, several patients previously infected with MERS-CoV received the COVID-19 vaccine; data describing how preexisting MERS-CoV immunity may shape the response to SARS-CoV-2 following infection or vaccination are lacking. Objective: To characterize the cross-reactive and protective humoral responses in patients exposed to both MERS-CoV infection and SARS-CoV-2 vaccination. Design, Setting, and Participants: This cohort study involved a total of 18 sera samples collected from 14 patients with MERS-CoV infection before (n = 12) and after (n = 6) vaccination with 2 doses of COVID-19 mRNA vaccine (BNT162b2 or mRNA-1273). Of those patients, 4 had prevaccination and postvaccination samples. Antibody responses to SARS-CoV-2 and MERS-CoV were assessed as well as cross-reactive responses to other human coronaviruses. Main Outcomes and Measures: The main outcomes measured were binding antibody responses, neutralizing antibodies, and antibody-dependent cellular cytotoxicity (ADCC) activity. Binding antibodies targeting SARS-CoV-2 main antigens (spike [S], nucleocapsid, and receptor-binding domain) were detected using automated immunoassays. Cross-reactive antibodies with the S1 protein of SARS-CoV, MERS-CoV, and common human coronaviruses were analyzed using a bead-based assay. Neutralizing antibodies (NAbs) against MERS-CoV and SARS-CoV-2 as well as ADCC activity against SARS-CoV-2 were assessed. Results: A total of 18 samples were collected from 14 male patients with MERS-CoV infection (mean [SD] age, 43.8 [14.6] years). Median (IQR) duration between primary COVID-19 vaccination and sample collection was 146 (47-189) days. Prevaccination samples had high levels of anti-MERS S1 immunoglobin M (IgM) and IgG (reactivity index ranging from 0.80 to 54.7 for IgM and from 0.85 to 176.3 for IgG). Cross-reactive antibodies with SARS-CoV and SARS-CoV-2 were also detected in these samples. However, cross-reactivity against other coronaviruses was not detected by the microarray assay. Postvaccination samples showed significantly higher levels of total antibodies, IgG, and IgA targeting SARS-CoV-2 S protein compared with prevaccination samples (eg, mean total antibodies: 8955.0 AU/mL; 95% CI, -5025.0 to 22936.0 arbitrary units/mL; P =.002). In addition, significantly higher anti-SARS S1 IgG levels were detected following vaccination (mean reactivity index, 55.4; 95% CI, -9.1 to 120.0; P =.001), suggesting potential cross-reactivity with these coronaviruses. Also, anti-S NAbs were significantly boosted against SARS-CoV-2 (50.5% neutralization; 95% CI, 17.6% to 83.2% neutralization; P <.001) after vaccination. Furthermore, there was no significant increase in antibody-dependent cellular cytotoxicity against SARS-CoV-2 S protein postvaccination. Conclusions and Relevance: This cohort study found a significant boost in cross-reactive NAbs in some patients exposed to MERS-CoV and SARS-CoV-2 antigens. These findings suggest that isolation of broadly reactive antibodies from these patients may help guide the development of a pancoronavirus vaccine by targeting cross-reactive epitopes between distinct strains of human coronaviruses..This work was supported by internal funds from the Biomedical Research Center of Qatar University. Dr Nasrallah received funding from The WHO Eastern Mediterranean Regional Office (WHO-EMRO) Special Grant for COVID-19 Research

    Comparative analysis of within-host diversity among vaccinated COVID-19 patients infected with different SARS-CoV-2 variants

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly evolving RNA virus that mutates within hosts and exists as viral quasispecies. Here, we evaluated the within-host diversity among vaccinated and unvaccinated individuals (n = 379) infected with different SARS-CoV-2 Variants of Concern. The majority of samples harbored less than 14 intra-host single-nucleotide variants (iSNVs). A deep analysis revealed a significantly higher intra-host diversity in Omicron samples than in other variants (p value < 0.05). Vaccination status and type had a limited impact on intra-host diversity except for Beta-B.1.315 and Delta-B.1.617.2 vaccinees, who exhibited higher diversity than unvaccinated individuals (p values: <0.0001 and <0.0021, respectively). Three immune-escape mutations were identified: S255F in Delta and R346K and T376A in Omicron-B.1.1.529. The latter 2 mutations were fixed in BA.1 and BA.2 genomes, respectively. Overall, the relatively higher intra-host diversity among vaccinated individuals and the detection of immune-escape mutations, despite being rare, suggest a potential vaccine-induced immune pressure in vaccinated individuals.The authors are grateful for the leadership and assistance provided by the Ministry of Public Health in Qatar, the virology laboratory staff at Hamad Medical Corporation, and Qatar Biobank (QBB) team. This project was funded by Qatar National Research Fund (QNRF; Project number UREP28-164-3-048) and Qatar University (Project number QUCG-BRC-22/23-547). The article processing charges were paid from grant no. QUCG-BRC-2022/23-578

    Performance evaluation of five ELISA kits for detecting anti-SARS-COV-2 IgG antibodies

    Get PDF
    ObjectivesTo evaluate and compare the performances of five commercial ELISA assays (EDI, AnshLabs, Dia.Pro, NovaTec, and Lionex) for detecting anti-SARS-CoV-2 IgG. Methods70 negative control samples (collected before the COVID-19 pandemic) and samples from 101 RT-PCR-confirmed SARS-CoV-2 patients (collected at different time points from symptoms onset: ≤7, 8-14, and >14 days) were used to compare the sensitivity, specificity, agreement, positive and negative predictive values of each assay with RT-PCR. A concordance assessment between the five assays was also conducted. Cross-reactivity with other HCoV, non-HCoV respiratory viruses, non-respiratory viruses, and nuclear antigens was investigated. ResultsLionex showed the highest specificity (98.6%, 95%CI: 92.3-99.8), followed by EDI and Dia.Pro (97.1%, 95%CI: 90.2-99.2), NovaTec (85.7%, 95%CI: 75.7-92.1), then AnshLabs (75.7%, 95%CI: 64.5-84.2). All ELISA kits cross-reacted with one anti-MERS IgG positive sample except Lionex. The sensitivity was low during the early stages of the disease but improved over time. After 14 days from symptoms onset, Lionex and NovaTec showed the highest sensitivity at 87.9% (95%CI: 72.7-95.2) and 86.4% (95%CI: 78.5-91.7), respectively. The agreement with RT-PCR results based on Cohen’s kappa was as follows: Lionex (0.89)> NovaTec (0.70)> Dia.Pro (0.69)> AnshLabs (0.63)> EDI (0.55). ConclusionThe Lionex ELISA, which measures antibodies solely to the S1 protein, demonstrated the best performance.This work was made possible by grant No. RRC-2-032 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. GKN would like to acknowledge funds from Qatar University's internal grant QUERG-CMED-2020-2

    Coronavirus Disease 2019 Disease Severity in Children Infected With the Omicron Variant

    Get PDF
    SHORT SUMMARY: Severe acute respiratory syndrome coronavirus 2 infection from the Omicron variant in children/adolescents is less severe than infection from the Delta variant. Those 6 to <18 years also have less severe disease than those <6 years old. BACKGROUND: There are limited data assessing coronavirus 2019 (COVID-19) disease severity in children/adolescents infected with the Omicron variant. METHODS: We identified children and adolescents <18 years of age with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with Delta and propensity score-matched controls with Omicron variant infection from the National COVID-19 Database in Qatar. Primary outcome was disease severity, determined by hospital admission, admission to the intensive care unit (ICU), or mechanical ventilation within 14 days of diagnosis, or death within 28 days. RESULTS: Among 1735 cases with Delta variant infection between 1 June and 6 November 2021, and 32 635 cases with Omicron variant infection between 1 January and 15 January 2022, who did not have prior infection and were not vaccinated, we identified 985 propensity score-matched pairs. Among those who were Delta infected, 84.2% had mild, 15.7% had moderate, and 0.1% had severe/critical disease. Among those who were Omicron infected, 97.8% had mild, 2.2% had moderate, and none had severe/critical disease (P < .001). Omicron variant infection (vs Delta) was associated with significantly lower odds of moderate or severe/critical disease (adjusted odds ratio [AOR], 0.12; 95% confidence interval [CI], .07-.18). Those aged 6-11 and 12 to <18 years had lower odds of developing moderate or severe/critical disease compared with those younger than age 6 years (aOR, 0.47; 95% CI, .33-.66 for 6-11 year olds; aOR, 0.45; 95% CI, .21-.94 for 12 to <18 year olds). CONCLUSIONS: Omicron variant infection in children/adolescents is associated with less severe disease than Delta variant infection as measured by hospitalization rates and need for ICU care or mechanical ventilation. Those 6 to <18 years of age also have less severe disease than those <6 years old
    corecore